Block of squid axon K channels by internally and externally applied barium ions
نویسندگان
چکیده
We have studied the interactions of Ba ion with K channels. Ba2+ blocks these channels when applied either internally or externally in millimolar concentrations. Periodic depolarizations enhance block with internal Ba2+, but diminish the block caused by external Ba2+. At rest, dissociation of Ba2+ from blocked channels is very slow, as ascertained by infrequent test pulses applied after washing Ba2+ form either inside or outside. The time constant for recovery from internal and external Ba2+ is the same. Frequent pulsing greatly shortens recovery time constant after washing away both Ba2+in and Ba2+out. Block by Ba2+ applied internally or externally is voltage dependent. Internal Ba2+ block behaves like a one-step reaction governed by a dissociation constant (Kd) that decreases e-fold/12 mV increase of pulse voltage: block deepens with more positive pulse voltage. For external Ba2+, Kd decreases e-fold/18 mV as holding potential is made more negative: block deepens with increasing negativity. Millimolar external concentrations of some cations can either lessen (K+) or enhance (NH+4, Cs+) block by external Ba2+. NH+4 apparently enhances block by slowing exist of Ba ions from the channels. Rb+ and Cs+ also slow clearing of Ba ions from channels. We think that (a) internally applied Ba2+ moves all the way through the channels, entering only when activation gates are open; (b) externally applied Ba2+ moves two-thirds of the way in, entering predominantly when activation gates are closed; (c) at a given voltage, Ba2+ occupies the same position in the channels whether it entered from inside or outside.
منابع مشابه
Dynamic Asymmetries in the Squid Axon Membrane
In 1952 Hodgkin and Huxley were able to separate the m e m b r a n e currents which occur in response to step changes in membrane potential, upon voltage c lamping the squid giant axon, into two major current components : an initial transient component mainly carried under normal conditions by sodium ions and a delayed component mainly carried by potassium ions. Tetrodotoxin ( T T X ) specifica...
متن کاملMechanism of K+ channel block by verapamil and related compounds in rat alveolar epithelial cells
The mechanism by which the phenylalkylamines, verapamil and D600, and related compounds, block inactivating delayed rectifier K+ currents in rat alveolar epithelial cells, was investigated using whole-cell tight-seal recording. Block by phenylalkylamines added to the bath resembles state-dependent block of squid K+ channels by internally applied quarternary ammonium ions (Armstrong, C.M. 1971. ...
متن کاملDynamics of 9-aminoacridine block of sodium channels in squid axons
The interactions of 9-aminoacridine with ionic channels were studied in internally perfused squid axons. The kinetics of block of Na channels with 9-aminoacridine varies depending on the voltage-clamp pulses and the state of gating machinery of Na channels. In an axon with intact h gate, the block exhibits frequency- and voltage-dependent characteristics. However, in the pronase-perfused axon, ...
متن کاملInteractions of monovalent cations with sodium channels in squid axon. II. Modification of pharmacological inactivation gating
Inactivation of Na channels has been studied in voltage-clamped, internally perfused squid giant axons during changes in the ionic composition of the intracellular solution. Peak Na currents are reduced when tetramethylammonium ions (TMA+) are substituted for Cs ions internally. The reduction reflects a rapid, voltage-dependent block of a site in the channel by TMA+. The estimated fractional el...
متن کاملHydrogen ion block of the sodium pore in squid giant axons
The block of squid axon sodium channels by H ions was studied using voltage-clamp and internal perfusion techniques. An increase in the concentration of internal permeant ions decreased the block produced by external H ions. The voltage dependence of the block was found to be nonmonotonic: it was reduced by both large positive and large negative potentials. The ability of internal ions to modif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 80 شماره
صفحات -
تاریخ انتشار 1982